BJT Circuits (MCQs of Moderate Complexity)

1. The current i_b through base of a silicon npn transistor is 1+0.1 cos (1000 π t) ma. At 300K, the r_{π} in the small signal model of the transistor is

- (a) 250Ω
- (b) 27.5Ω

- (c) 25Ω
- (d) 22.5Ω

[GATE 2012: 1 Mark]

Answer (c)

The current i_b through the base of a silicon npn transistor is 1+0.1 cos (10000 π t) ma. At 300 K, the r_π in the small signal model of the transistor is given by

$$\mathbf{r}_{\pi} = \boldsymbol{\beta} \cdot \boldsymbol{r} \boldsymbol{e} = \boldsymbol{\beta} \frac{\boldsymbol{v}_T}{I_E}$$

$$\cong \boldsymbol{\beta} \frac{\boldsymbol{v}_T}{\boldsymbol{\beta} i_b} = \frac{\boldsymbol{v}_T}{i_b}$$

$$V_T=25mv, i_b=1ma$$

$$r_{\pi}=25~\Omega$$

2. The amplifier circuit shown below uses a silicon transistor. The capacitors C_C and C_E can be assumed to be short at signal frequency and the effect of output resistance r_0 can be ignored. If C_E is disconnected from the circuit, which one of the following statements is TRUE?

- (a) The input resistance R_i increases and the magnitude of voltage gain A_V decreases.
- (b) The input resistance R_i decreases and the magnitude of voltage gain A_V increases.
- (c) Both input resistance Riand the magnitude of voltage gain Av decrease.
- (d) Both input resistance R_iand the magnitude of voltage gain A_V increase.

Answer (a)

If C_E is disconnected from the circuit, this is negative feedback. The input impedance increases and voltage gain decreases.

3. In an ideal differential amplifier shown in the figure, a large value of (R_E).

- (a) Increases both the differential and common-mode gains.
- (b) Increases the common-mode gain only
- (c) Decreases the differential-mode gain only
- (d) Decreases the common-mode gain only

Answer (d)

Only common mode gain depends on $R_{\text{\tiny E}}$ and differential mode gain is independent of $R_{\text{\tiny E}}$

- 4. The cascode amplifier is a multistage configuration of
 - (a) CC-CB

(c) CB-CC

(b) CE-CB

(d) CE-CC

[GATE 2005: 1 Mark]

Answer (b)

Cascode amplifier provides a high input impedance with low voltage gain to ensure minimum input miller capacitance, thus suitable for high frequency operation.

5. Assuming $V_{CEsat} = 0.2 \text{ V}$ and $\beta = 50$, the minimum base current (I_B) required to drive the transistor in the figure to saturation is

(a) $56 \mu A$

(c) $60 \mu A$

(b) 140 μA

(d) $3 \mu A$

[GATE 2004: 1 Marks]

Answer (a)

$$V_{CE} \, sat = 0.2V \, \& \, \beta = 50$$

$$V_{CE} = V_{CC} - I_C \times 1K$$

$$0.2 = 3 - I_C \times 1K$$

$$I_C = 2.8 ma$$
, $I_B = \frac{2.8 ma}{50} = 56 \mu a$

- 6. Generally, the gain of a transistor amplifier falls at high frequency due to the
 - (a) Internal capacitance of the device
 - (b) Coupling capacitor at the input
 - (c) Skin effect
 - (d) Coupling capacitor at the output

[GATE 2003: 1 Mark]

Answer (a)

The gain of the transistor amplifier falls at high frequency due to internal capacitance of the device.

- 7. The current gain of a BJT is
 - (a) $g_m r_0$
 - (b) g_m / r_o

- (c) $g_m r_{\pi}$
- (d) g_m / r_π

[GATE 2002: 1 Mark]

Answer (c)

The current gain of a BJT is β or h_{fe}

$$g_m = \frac{I_C}{V_i} = \frac{\beta I_B}{I_B r_\pi}$$
 or $g_m = \frac{\beta}{r_\pi}$ so $\beta = g_m r_\pi$

- 8. The current gain of a bipolar transistor drops at high frequencies because of
 - (a) Transistor capacitances

(c) Parasitic inductive elements

(b) High current effects in the base

(d) The Early effect

[GATE 2000: 1 Mark]

Answer (a)

The current gain of a bipolar transistor drops at high frequencies because of transistor internal capacitances.

9. In the differential amplifier of the figure, if the source resistance of the current source I_{EE} is infinite, then common-mode gain is

- (a) Zero
- (b) Infinite

- (c) Indeterminate
- (d) $(V_{in1} + V_{in2}) + 2V_T$

[GATE 2000: 1 Mark]

Answer (a)

The Common mode gain, $V_C = A_C V_i$ $(V_{i_1} = V_{i_2} = V_i)$. If the source resistance of current source (Rs) is infinite then due to symmetry common mode gain V_C is zero.

10. In the cascode amplifier shown in the figure, if the common-emitter stage (Q_1) has a trans conductance g_{m1} and the common base stage (Q_2) has a trans conductance g_{m2} then the overall trans conductance $g(=i_0/V_i)$ of the cascode amplifier is

- (a) g_{m1}
- (b) g_{m2}

- (c) $g_{m1}/2$
- (d) $g_{m2}/2$

[GATE 1999: 1 Mark]

Answer (a)

 Q_1 has transconductance g_{m_1}

 \mathbb{Q}_2 has transconductance g_{m_2}

Overall transconductance $g = \frac{i_0}{V_i}$

$$i_0=i_{E_2}=i_{C_1}\ so\ g=g_{m_1}$$

- 11. the unit of q / KT are
 - (a) V

(c) J

(b) V^{-1}

(d) J / K

[GATE 1998: 1 Mark]

Answer (b)

Thermal voltage = $V_T = \frac{KT}{q}$

- 12. A multistage Amplifier has a low-pass Response with three real poles at $s = -\omega_1, -\omega_2$ and ω_3 The approximate overall bandwidth B of the Amplifier will be given by
 - (a) $B = \omega_1 + \omega_2 + \omega_3$

(b)
$$\frac{1}{B} = \frac{1}{\omega_1} + \frac{1}{\omega_2} + \frac{1}{\omega_3}$$

(c)
$$B = (\omega_1 + \omega_2 + \omega_3)^{1/3}$$

(c)
$$B = (\omega_1 + \omega_2 + \omega_3)^{1/3}$$

(d) $B = \sqrt{\omega_1^2 + \omega_2^2 + \omega_3^3}$

[GATE 1998: 1 Mark]

Answer (b)

$$\frac{1}{B} = \frac{1}{\omega_1} + \frac{1}{\omega_2} + \frac{1}{\omega_3}$$

Cascading of amplifier results in decrease of higher cutoff frequency (fh) and increase in lower cutoff frequency (f_L)

$$B.W = f_H - f_L$$
 so $B.W.$ Decreases

13. A distorted sinusoid has the amplitude, A₁, A₂, A_{3...}of the fundamental, second harmonic, third harmonic,..... respectively. The total harmonic distortion is

(a)
$$\frac{A_2 + A_3 + \cdots}{A_1}$$
 (c) $\frac{\sqrt{A_2^2 + A_3^2 + \cdots}}{\sqrt{A_1^2 + A_2^2 + A_3^2}}$ (d) $\frac{(A_2^2 + A_3^2 + \cdots)}{A_1}$

[GATE 1998: 1 Mark]

Answer (b)

The total harmonic distortion is

$$T. H. D = \frac{\sqrt{A_2^2 + A_3^2 + ---}}{A_1}$$

- 14. From measurement of the rise time of the o/p pulse of an amplifier whose input is a small amplitude square wave, one can estimate the following parameter of the amplifier.
 - (a) Gain-bandwidth product

(c) Upper-3-dB frequency

(b) Slew-Rate

(d) Lower-3-dB frequency

[GATE 1998: 1 Mark]

Answer (c)

Upper 3dB frequency

$$B.W = f_H = \frac{0.35}{t_r}$$

t_r is the rise time

- 15. A cascode amplifier stage is equivalent to
 - (a) A common emitter stage following by a common base stage
 - (b) A common base stage followed by an emitter follower
 - (c) An emitter follower stage followed by a common base stage
 - (d) A common base stage followed by a common emitter stage

[GATE 1997: 1 Mark]

Answer (a)

A common emitter stage followed by a common base stage

16. In the BJT amplifier shown in the figure is the transistor is biased in the forward active region putting a capacitor across R_E will

- (a) Decrease the voltage gain and decrease the i/p impedance
- (b) Increase the voltage gain and decrease the i/p impedance
- (c) Decrease the voltage gain and increase the i/p impedance
- (d) Increase the voltage gain and increase the i/p impedance

[GATE 1997: 1 Mark]

Answer (b)

The bypass capacitor C across R_E will act as short circuit for ac signal. Thus there is no negative feedback hence increases the voltage gain and decreases the input impedance.

17. A transistor having α =0.99 and V_{BE} = 0.7V, is used in the circuit of the figure is the value of the collector current will be

Answer $I_C = 5.33 \text{ mA}$

 $\alpha = 0.99, V_{BE} = 0.7V, collector current is I_C?$

KVL for the base circuit

$$(I_C + I_B)1K + 10KI_B + V_{BE} + (I_C + I_B)1K = 12$$

$$I_B = \frac{I_C}{\beta}$$
 and $\beta = \frac{\alpha}{1 - \alpha} = \frac{0.99}{1 - 0.99} = 99$

Upon solving Ic=5.33 ma

- 18. A BJT is said to be operating in the saturation Region if
 - (a) Both the junction are reverse biased.
 - (b) Base-emitter junction is reverse biased and base-collector junction is forward biased.
 - (c) Base-emitter junction is forward biased and base-collector junction is reverse-biased.
 - (d) Both the junction are forward biased.

[GATE 1995: 1 Mark]

Answer (d)

Both the junction are forward biased in saturation

19. A common emitter transistor amplifier has a collector current of 1.0 mA when it's a base current is 25 μ A at the room temperature. Its input resistance is approximately equal to...

[GATE 1994: 1 Mark]

Answer: $Z_{in} = 1 K\Omega$

Input resistance is approximately equal to β . re

where
$$r_e = \frac{25mV}{I_E} = \frac{V_T}{I_E}$$

$$Z_{in} = \boldsymbol{\beta} \cdot \boldsymbol{r}_e = \frac{V_T}{I_B} = \frac{25mV}{25\mu a} = \mathbf{1}K\Omega$$

- 20. The bandwidth of an n-stage tuned amplifier, with each stage having a bandwidth of B, is given by.
 - (a) B/n

(c)
$$B\sqrt{2^{1/n}-1}$$

(b)
$$B/\sqrt{n}$$

(d)
$$B/\sqrt{2^{1/n}-1}$$

[GATE 1993: 1 Mark]

Answer (c)

The overall bandwidth of an n-stage tuned amplifier is

$$BW^n = B\sqrt{2^{1/n} - 1}$$

21. For good stabilized biasing of the transistor of the CE amplifier of figure we should have

- (a) $\frac{R_E}{R_B} \ll 1$
- (b) $\frac{R_E}{R_B} \gg 1$

- (c) $\frac{R_E}{R_B} \ll h_{FE}$
- (d) $\frac{R_E}{R_B} \gg h_{FE}$

[GATE 1990: 1 Mark]

Answer (b)

Stability factor of potential divider biasing is given by $s = 1 + \frac{R_B}{R_E}$

For an ideal case S=1 so for a good stability $\frac{R_B}{R_E} \ll 1$ or $\frac{R_E}{R_B} \gg 1$

22. Each transistor in the Darlington pair (see Figure below) has $h_{fe} = 100$. The overall h_{FE} of the composite transistor neglecting the leakage currents is

(a) 10000

(c) 10100

(b) 10001

(d) 10200

[GATE 1988: 2 Marks]

Answer (c)

$$h_{fe} = 100$$

$$I_{E_1} = I_{B_1} + I_{C_1} = I_{B_1}(1 + \beta)$$

$$I_{B_2} = I_{E_1} = I_{B_1}(1+\beta)$$

$$I_{C_2} = \beta I_{B_2} = I_{B_1}(\beta + 1)\beta$$

Overall h_{fe} of composite transistor

$$\frac{I_{C_2}}{I_{B_1}} = (\beta + 1)\beta = 100(100 + 1) = 10100$$

23. A Darlington stage is shown in the is if the trans conductance is given by g_m is given by

- (a) g_{m1}
- (b) $0.5 g_{m1}$

- (c) g_{m2}
- (d) $0.5 g_{m2}$

Answer (d)

Transconductance of $Q_1 = g_{m_1}$, transconductance of $Q_2 = g_{m_2}$

$$g_{m_2} = \frac{I_C}{V_{be}}$$

Overall transconductance
$$\frac{I_C}{2V_{b_e}} = \frac{g m_2}{2} = 0.5 g_{m_2}$$

- 24. The quiescent collector current I_C of a transistor is increased by changing resistances. As a result.
 - (a) g_m will not be affected
 - (b) g_m will decrease
 - (c) g_m will increase
 - (d) g_m will increase or decrease depending upon bias stability.

[GATE 1988: 2 Marks]

Answer (c)

$$oldsymbol{g_m} = rac{I_C}{V_T}$$
 , If $oldsymbol{I_C} \uparrow$, $oldsymbol{g_m} \uparrow$

If the quiescent collector current $I_{\rm C}$ increases then the transconductance g_m also increases

- 25. which of the following statements are correct for basic transistor amplifier configurations
 - (a) CB amplifier has low input impedance and low current gain.
 - (b) CC amplifier has low output impedance and high current gain
 - (c) CE amplifier has very poor voltage gain but very high input impedance
 - (d) The current gain of CB amplifier is higher than the current gain of CC

[GATE 1990: 2 Marks]

Answer (a) & (b)

Common base (CB) amplifier has low input impedance and low current gain (α)

Common collector (CC) amplifier has low output impedance and high current $gain(\gamma)$

$$\gamma = \frac{I_e}{I_b}$$

26. Match the following

List-I

- (A) The current gain of a BJT will be increased
- (B) The current gain of a BJT will be reduced
- (C) The break-down voltage of a BJT will be reduced List-II
- (1) The collector doping concentration is increased
- (2) The base width is reduced
- (3) The emitter doping concentration to base doping concentration ratio is reduced
- (4) The base doping concentration is increased keeping the ratio of the emitter doping concentration to base doping concentration constant
- (5) The collector doping concentration is reduced

[GATE 1994: 2 Marks]

Answer (A-2, B-3, C-1)

As the base width of BJT is reduced, then the recombination current (base current I_B) decrease as a result collector current increases so, the current gain increase.

If the emitter doping concentration to base doping concentration is reduced then the emitter infection efficiency decrease, the current gain of a BJT reduces.

If the collector doping concentration is increased the breakdown voltage is reduced as breakdown voltage $BV \propto \frac{1}{N_D}$ N_D doping concentration

27. Match the following

- (a) Cascode amplifier
- (b) Differential amplifier
- (c) Darlington pair common-collector amplifier Amplifier
- (1) Does not provide current gain
- (2) Is a wide band amplifier
- (3) Has very high input impedance and very high current gain
- (4) Provides high common mode voltage rejection

[GATE 1996: 2 Marks]

Answer (a-2, b-4, c-3)

Cascade amplifier is a wideband amplifier. Differential amplifier provides high common mode voltage rejection

Darlington pair common collector has high input impedance and very high current gain

28. Three identical RC-coupled transistor amplifier has a frequency response as shown in the figure, the overall frequency response is as given in

(a)
$$f_L = 20 H_Z$$
, $f_H = 1 KHz$

(c)
$$f_L = 40 \text{ Hz}$$
, $f_H = 1 \text{ KHz}$

(b)
$$f_L = 40 \text{ Hz}$$
, $f_H = 0.5 \text{ KHz}$

(d)
$$f_L = 40 \text{ Hz}$$
, $f_H = 2 \text{ KHz}$

[GATE 2002: 1 Mark]

Answer (b)

$$f_L = 20 \text{ Hz}$$
, $f_H = 1 \text{ KHz}$

for a cascaded stage
$$f_l^* = \frac{f_L}{\sqrt{2^{1/n}-1}} = \frac{20}{\sqrt{2^{1/3}-1}} = 39.2 Hz$$

$$f_H^* = f_H \sqrt{2^{1/n} - 1} = 1\sqrt{2^{1/3} - 1} = 0.5K$$

29. Choose the correct match for input resistance of various amplifier configurations shown below

Configuration

CB: common base

CC: common collector

CE: common emitter

Input resistance

LO: Low

MO: Moderate

HI: High

- (a) CB-LO, CC-MO, CE-HI
- (b) CB-LO, CC-HI, CE-MO

- (c) CB-MO, CC-HI, CE-LO
- (d) CB-HI, CC-LO, CE-MO

[GATE 2003: 1 Mark]

Answer (b)

Common base has low input impedance

Common collector has high input impedance

Common emitter has moderate input impedance

GATESTUDY.COM