ADC and DAC

1. D/A converters are generally
 a. Weighted resistor network
 b. Binary ladder network
 c. Either (a) or (b)
 d. Neither (a) nor (b)

 Soln. (b)

2. In a 4 bit D/A converter, The offset error is the output voltage when input digital voltage is
 a. 1111
 b. 0000
 c. Either 1111 or 0000
 d. None of the above

 Soln. (b)

3. Which is known as flash converter
 a. Weighted resistor D/A converter
 b. Parallel A/D converter
 c. Stair step A/D converter
 d. Up–down counter type A/D converter

 Soln. (b)

 Flash ADC is the fastest of all D/A converters and uses 2^{n-1} **comparators. It is expansive**

4. Which converters uses integrating op-amp
 a. Parallel A/D converter
 b. Single slope A/D converter
 c. Dual slop A/D converter
 d. Both (b) and (c)

 Soln. (c)

 The core of the dual slope A/D converter is the integrating op-amp and thus it has good noise immunity and its accuracy is high. It requires 2.2^n **twice the ramp type clock cycles for conversion.**
5. The accuracy of A/D conversion is generally
 a. $\pm \frac{1}{2} \text{LSB}$
 b. $\pm \text{LSB}$
 c. $\pm \frac{5}{4} \text{LSB}$
 d. None of the above
 Soln. (a)

 It is half of the resolution of A/D converter

6. The number of counter states which an 8 bit stair step A/D converter has to pass through before conversion is
 a. 1
 b. 8
 c. 255
 d. 256
 Soln. (d)

 The number of counter states for 8 bit ramp type A/D converter is $2^8 = 256$

7. An n bit ADC using V as reference has a resolution of
 a. $\frac{V}{2^n}$
 b. $V(n)$
 c. $\frac{V}{2^n-1}$
 d. $2V(n)$
 Soln. (c)

 Each successive binary count is equal to $\frac{1}{2^n}$ of the total, so the resolution of n bit ADC using V as reference is $\frac{V}{2^n-1}$

8. A 6 bit ladder D/A converter has input 101001. For 1 = 10 V and 0 = 0V, The output is
 a. 4.23
 b. 6.51
 c. 5.52
 d. 9.23
 Soln. (b)

 For a 6 bit D/A converter whose output varies from 0 to 10V, the resolution is

 $Res = \frac{10}{2^6-1} = \frac{10}{63} = 0.1587$

 The resolution is the smallest analog change in the output or a change in one LSB
So \(101001 = (41)_{10}\)

So output is \(41 \times 0.1587 = 6.51V\)

9. A 10 bit D/A converter given a maximum output of 10.23V. The resolution is
 a. 10 mV
 b. 20 mV
 c. 15 mV
 d. 25 mV

 Soln. (a)

 Resolution \(\frac{10.23}{2^{10} - 1} = \frac{10.23}{1023} = \frac{1}{100} \text{ volts} = 10\text{mV}\)

10.
 a. Successive approximation
 b. Dual slope
 c. Parallel comparator

 Maximum conversion time for 8 bit ADC in clock cycles
 (1) 1
 (2) 8
 (3) 16
 (4) 256
 (5) 512

 Soln. Options a – 2, b – 5, c – 1,

 For n bit ADC, the conversion time for

 a. Successive approximation = \(n\) clock cycles = \(8T_{CK}\)
 b. Dual slope = \(2^n T_{CK} = 2^{n+1} T_{CK} = 512 T_{CK}\)
 c. Parallel comparator: 1 clock cycle = \(T_{CK}\)

11. For an ADC, match the following : if

 List – I
 (a) Flash converter
 (b) Dual slope converter
 (c) Successive approximation converter

 List – II
(1) Requires a conversion time of the order of a few seconds
(2) Requires a digital-to-analog converter
(3) Minimizes the effect of power supply interference.
(4) Requires a very complex hardware
(5) Is a tracking A/D converter.

[SOLN] Flash converter or parallel A/D converter is fastest of all but requires a complex hardware. Dual slope integrator has good noise immunity and thus minimizes the effect of power supply interference. Successive approximation has shorter conversion time of the order of μsec and depends upon the number of bits only. For n bit ADC, it requires n clock cycles. It uses D/A converter.

A – 4, B – 3, C – 2

12. The advantage of using a dual slope ADC in a digital voltmeter is that
 a. Its conversion time is small c. It gives output in BCD format
 b. Its accuracy is high d. It does not require a comparator

[SOLN] (b)

13. An 8 bit successive approximation analog to digital converter has full scale reading of 2.55 V and its conversion time for an analog input of 1V is 20μs. The conversion time for a 2V input will be
 a. 10 μs c. 40 μs
 b. 20 μs d. 50 μs

[SOLN] (b)

The conversion time of successive approximate ADC depends upon the number of bits only.

14. The number of comparators in a 4-bit flash ADC is
 a. 4 c. 15
 b. 5 d. 16

[SOLN] 5
15. For the 4 bit DAC shown in the figure, the output voltage V_0 is

$$V_0 = \left(1 + \frac{R_f}{R}\right)V_{in} = 8 \times \frac{5}{8} = 5V$$

16. A digital system is required to amplify a binary encoded audio signal. The user should be able to control the gain of the amplifier from a minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is

$$2^n > 100$$

$$n \geq 7$$