
Digital Integrated Circuits - Logic Families (Part II)

MOSFET Logic Circuits

- MOSFETs are unipolar devices. They are simple, small in size, inexpensive to fabricate and consume less power.
- MOS fabrication is simpler than TTL and greater packing density
- JFETs for linear circuits & MOSFETs for digital circuits.
- Fabricated in less area than BJT Two types of MOS structure,
 - (i) N MOS Majority carriers electrons
 - (ii) P MOS Majority carriers Holes
- Depletion type or enhancement type
- MOS devices can be used as transistor as well as resistor
- P MOS & N MOS digital ICs have greater packing density than C MOS
- N MOS will be twice as fast as P MOS
- N MOS & P MOS find applications in LSIs like μPs, memories etc.

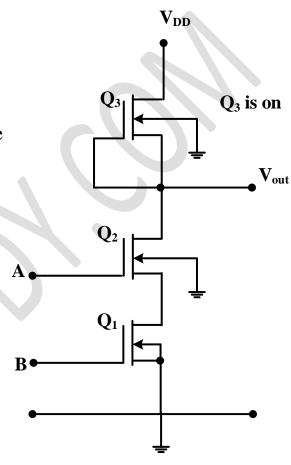
• CMOS for MSI applications.

The circuits for N MOS inverter and N MOS NAND are given

N MOS Invertor – Active Pull up

 $Q_1 \& Q_2$ are enhancement mode switching transistor

 Q_3 is depletion mode pull up as active load


Logic 1 turns on respective transistor

Logic 0 turns off respective transistor

Both transistor on to generate logic 0 at output

Either or both off output at logic 1

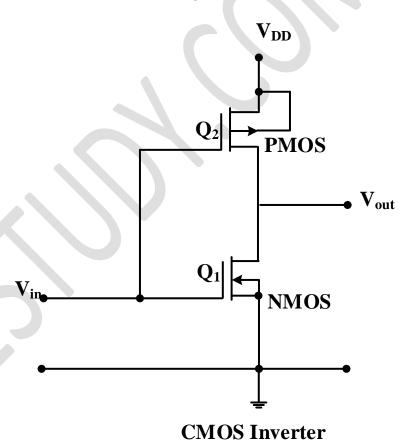
Thus behaves as NAND GATE

N MOS NAND GATE

Complementary MOS Logic (CMOS):

- Complementary Symmetry Metal Oxide Semiconductors COSMOS or CMOS .They are made using PMOS and NMOS
- C MOS make use of both N MOS & P MOS
- Power consumption under static condition is extremely low.
- CMOS excel PMOS And NMOS due to
 - (i) Low power dissipation
 - (ii) Enhanced noise immunity
 - (iii) High fan out and
 - (iv) Ease of interfacing
- CMOS fabrication is simpler than TTL and greater packing density.
- C MOS captured the market due to its very low power and competitive speed.

C MOS inverter, NAND & NOR circuits are given

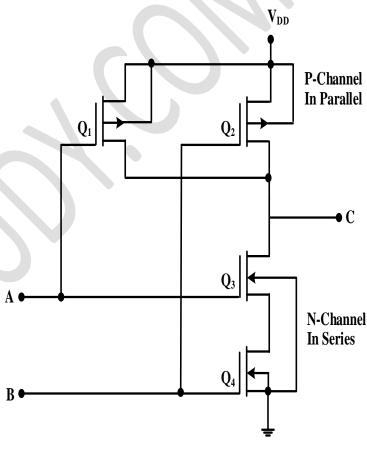

•C MOS make use of both

N MOS & P MOS

•N MOS & P MOS complementary devices

•Both Q₁ & Q₂ are enhancement type

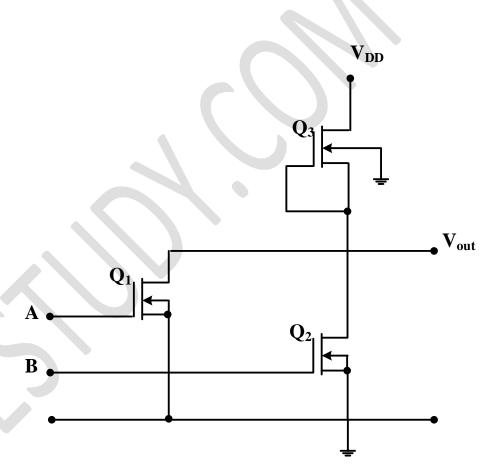
•When $V_{in} = 0 \text{ V } Q_1 \text{ cut}$ off (N MOS needs $+V_{GS}$) $V_{GS2} = -V_{DD}$, Q_2 is ON output V_{DD}


- •Two N MOS transistors at the bottom in series.
- •Two P MOS on top are connected in parallel
- •Form two pairs each with N & P MOSFETs
- •Let $V_A = V_B = 0$ Q_3 and Q_4 cutoff. $Q_1 \& Q_2$ conducting. Output at logic 1
- •Let $V_A = 0 \& V_B = 1$, Q_3 cutoff & Q_4 conducting, Q_1 is ON & Q_2 is off. (one transistor on provides direct connection between V_{DD} &

$$V_{out}$$
). $V_{out} = 1$

•Similarly, for $V_A = 1 \& V_B = 0$

 $V_A = V_B = 1$, Both $Q_3 \& Q_4$ conducting & Q1 and Q_2 off.


$$V_{out} = 0$$

Two-input CMOS NAND

- •Switching transistors Q₁ and Q₂ connected in parallel
- •If both transistors ON the output is logic 0
- •Both Q₁ and Q₂ OFF to generate logic 1 at output

MOS LOGIC – Sub FAMILIES

• First C MOS family 4000 series by RCA works with 15 V supply

• C MOS sub families

HC - (High Speed)

HCT - (High Speed TTL Compatible)

AC - (Advanced C MOS)

ACT - (Advanced TTL compatible)

C MOS Sub Families Characteristics

Family	74 HC	74 HCT	74 AC	74 ACT
V_{CC}	5 V	5 V	5 V	5 V
t _{pd} (ns)	18	18	11.1	12.3
Pd (µW)	2.5	2.5	5	5
(Steady State				
Speed Power	1.1	1.1	0.4	0.4
Product (pJ)				
100 KHz				

- AC/ACT Best speed power product.
- 74 AHC/AHCT (Advanced high speed C MOS these are advanced versions, so faster)

C MOS Logic

- Best suited for battery operated circuits.
- In high noise environment C MOS is better suited than TTL
- Unused C MOS input should be left open
- C MOS switching speed decreases with operating frequency.
- C MOS switching speed increase with supply voltage
- C MOS fan out is determined by
 - (i) Maximum permissible propagation delay
 - (ii) Input capacitance of each load

Low voltage Technology

Efforts have been increase chip density for

- More circuits on the chip
- Increasing operating speed (due to proximity)

But it increase chip dissipation.

Allowing chips at lower voltage power dissipation can be reduced.

Typical voltages are 3.3 V, 2.5 V etc.

Newer CPUS are 2.5 V devices & 3.3 V dynamic RAM in memory modules of PCs.

Comparison of Logic Families

Characteristics	TTL			ECL	MOS	CMOS	
	Std.	74 AS	74 ALS	1000		74 C	74 ACT
Fan out	10	40	20	25	20	50	50
Power	10	10	1	50	0.5	0.01	0.005
dissipation							
(mW)							
Noise	Very	Very	Very	Poor	Good	Excellent	Excellent
Immunity	good	good	good				
Prop. delay (ns)	10	1.5	1	2	300	70	4.75
Speed power	100	15	4	100	60	70	0.5
product (pJ)							

Observations:

- TTL series best at high frequency is 74 AS
- TTL series best for battery operated circuits is 74 ALS
- ECL is the fastest logic family (unsaturated)

• Best speed - power product (or FOM) is 74 ACT (for battery operated circuits)

High Speed Logic Comparisons (Newer Series)

	T	Γ L		C MOS		CML
Characteristics						
		1				
	74 AS	74 F	74 AHC	74 AVC	74 ALB	ECL
T _{pd} (ns)	1.7	3.8	3.7	2	2.2	0.3
$P_{D}(mW)$	8	6	0.006	0.006	1	25
Noise Margin	300	300	550	250 mV	400	150
(mV)						
Speed power	13.6	22.8	0.02	0.012	2.2	7.5
product (p-J)						

CML – Current mode logic

74 ALB – Advanced low voltage Bi C MOS

74 AHC – Advanced high speed C MOS

74 AVC – Advanced very low voltage C MOS (2.5 V)

(Propagation delay of 2 ns rivals 74 AS bipolar)

