Probability and Random Processes (Part – II)

1. If the variance σ_x^2 of d(n) = x(n) - x(n-1) is one-tenth the variance σ_x^2 of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation function $R_{xx}(k)/\sigma_x^2$ at k=1 is

(a) 0.95

(c) 0.10

(b)0.90

(d)0.05

[GATE 2002: 2 Marks]

Soln. The variance $\sigma_X^2 = E[(X - \mu_X)^2]$

Where $\mu_X(mean\ value) = 0$

$$\sigma_d^2 = E[\{X(n) - X(n-1)\}^2]$$

$$\sigma_d^2 = E[X(n)]^2 + E[X(n-1)]^2 - 2E[X(n)X(n-1)]$$

$$\frac{\sigma_X^2}{10} = \sigma_X^2 + \sigma_X^2 - 2R_{XX}(1)$$

$$\sigma_X^2 = 20\sigma_X^2 - 20R_{XX}(1)$$

$$\frac{R_{XX}}{\sigma_X^2} = \frac{19}{20} = 0.95$$

Option (a)

2. Let Y and Z be the random variables obtained by sampling X(t) at t = 2 and t = 4 respectively. Let W = Y - Z. The variance of W is

(a) 13.36

(c) 2.64

(b)9.36

(d) 8.00

[GATE 2003: 2 Marks]

Soln.
$$W = Y - Z$$
 Given $R_{XX(\tau)} = 4(e^{-0.2|\tau|} + 1)$

$$Variance[W] = E[Y - Z]^2$$

$$\sigma_W^2 = E[Y^2] + E[Z^2] - 2E[YZ]$$

Y and Z are samples of X(t) at t = 2 and t = 4

$$E[Y^2] = E[X^2(2)] = R_{XX(0)}$$

$$= 4[e^{-.2|0|} + 1] = 8$$

$$E[Z^2] = E[X^2(4)] = 4[e^{-0.2|0|} + 1] = 8$$

$$E[YZ] = R_{XX(2)} = 4[e^{-0.2(4-2)} + 1] = 6.68$$

$$\sigma_W^2 = 8 + 8 - 2 \times 6.68 = 2.64$$

Option (c)

3. The distribution function $F_X(x)$ of a random variable X is shown in the figure. The probability that X = 1 is

(a) Zero

(c) 0.55

(b)0.25

(d)0.30

[GATE 2004: 1 Mark]

Soln. The probability that $X = 1 = F_X(x = 1^+) - F_X(x = 1^-)$

$$P(x = 1) = 0.55 - 0.25 = 0.30$$

Option (d)

- 4. If E denotes expectation, the variance of a random variable X is given by
 - (a) $E[X^2] E^2[X]$

(c) $E[X^2]$

(b) $E[X^2] + E^2[X]$

 $(d)E^{2}[X]$

[GATE 2007: 1 Mark]

Soln. The variance of random variable X

$$\sigma_X^2 = E[(X - \mu_X)^2]$$

Where μ_X is the mean value = E[X]

$$\sigma_X^2 = E[X^2] + E[\mu_X]^2 - 2 \mu_X E[X]$$

$$= E[X^2] + \mu_X^2 - 2 \mu_X \mu_X$$

$$= E[X^2] - \mu_X^2$$

= mean square value - square of mean value

Option (a)

- 5. If $R(\tau)$ is the auto-correlation function of a real, wide-sense stationary random process, then which of the following is NOT true?
 - (a) $R(\tau) = R(-\tau)$
 - $(b)|R(\tau)| \le R(0)$
 - $(c) R(\tau) = -R(-\tau)$
 - (d) The mean square value of the process is R(0)

[GATE 2007: 1 Mark]

Soln. If all the statistical properties of a random process are independent of time, it is known as stationary process.

The autocorrelation function is the measure of similarity of a function with it's delayed replica.

$$R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t-\tau) f^*(t) dt$$

for
$$\tau = 0$$
, $R(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t) f^*(t) dt$

$$=\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|f(t)|^2\,dt$$

R(0) is the average power P of the signal.

 $R(\tau) = R^*(-\tau)exhibits$ conjugate symmety

 $R(\tau) = R(-\tau)$ for real function

 $R(0) \ge R(\tau)$ for all τ

 $R(\tau) = -R(-\tau)$ is not true (since it has even symmetry)

Option (c)

- 6. If S(f) is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true?
 - $(a) S(0) \ge S(f)$

$$(d) \int_{-\infty}^{\infty} S(f) df = 0$$

 $(b)S(f) \ge 0$

$$(c) S(-f) = -S(f)$$

[GATE 2007: 1 Mark]

Soln. Power spectral density is always positive

$$S(f) \geq 0$$

Option (b)

7. $P_X(x) = M \exp(-2|x|) + N \exp(-3|x|)$ is the probability density function for the real random variable X over the entire X axis M and N are both positive real numbers. The equation relating M and N is

(a)
$$M + \frac{2}{3}N = 1$$

$$(c) M + N = 1$$

(b)
$$2M + \frac{1}{3}N = 1$$

$$(d)M + N = 3$$

[GATE 2008: 2 Marks]

Soln.

$$\int_{-\infty}^{\infty} P_X(x) \, dx = 1$$

$$\int_{-\infty}^{\infty} (M.e^{-2x} + N.e^{-3x}) dx = 1$$

$$\int_{0}^{\infty} (M.e^{-2x} + N.e^{-3x}) dx = \frac{1}{2}$$

$$\frac{M.\,e^{-2x}}{-2}\bigg|_0^\infty + \frac{N.\,e^{-3x}}{-3}\bigg|_0^\infty = \frac{1}{2}$$

$$\frac{M}{2} + \frac{N}{3} = \frac{1}{2}$$

or,
$$M+\frac{2N}{3}=1$$

Option (a)

8. A white noise process X(t) with two-sided power spectral density $1 \times 10^{-10} W/Hz$ is input to a filter whose magnitude squared response is shown below.

The power of the output process y (t) is given by

(a)
$$5 \times 10^{-7} W$$

(c)
$$2 \times 10^{-6} W$$

(b)
$$1 \times 10^{-6} W$$

(d)
$$1 \times 10^{-5} W$$

[GATE 2009: 1 Mark]

Soln. Power spectral density of white noise at the input of a filter = $G_i(f)$

$$G_i(f) = 1 \times 10^{-10} (W/Hz)$$

PSD at the output of a filter

$$G_0(f) = |H(f)|^2 G_i(f)$$

= $\frac{1}{2} (2 \times 10 \times 10^3 \times 1) \times 10^{-10}$
= $10^{-6}W$
Option (b)

- 9. Consider two independent random variables X and Y with identical distributions. The variables X and Y take value 0,1 and 2 with probabilities $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$ respectively. What is the conditional probability (X + Y = 2|X - Y = 0)?
 - (a)0

(c) 1/6

(b) 1/16

(d)1

[GATE 2009: 2 Marks]

Soln.

$$P(X=0) = P(Y=0) = \frac{1}{2}$$

$$P(X = 0) = P(Y = 0) = \frac{1}{2}$$

 $P(X = 1) = P(Y = 1) = \frac{1}{4}$

$$P(X=2) = P(Y=2) = \frac{1}{4}$$

$$P(X - Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 1)$$

$$+P(X=2,Y=2) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{6}{16}$$

$$P(X + Y = 2) = P(X = 1, Y = 1) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

$$P(X + Y = 2 \mid_{X - Y = 0}) = \frac{1}{16} \div \frac{6}{16} = 1/6$$

Option (c)

10.X (t) is a stationary random process with autocorrelation function $R_X(\tau) = exp(-\pi\tau^2)$ this process is passed through the system below. The power spectral density of the output process Y(t) is

(a)
$$(4\pi^2 f^2 + 1) \exp(-\pi f^2)$$

(b)
$$(4\pi^2 f^2 - 1) \exp(-\pi f^2)$$

(c)
$$(4\pi^2 f^2 + 1) \exp(-\pi f)$$

(d)
$$(4\pi^2 f^2 - 1) exp(-\pi f)$$

[GATE 2011: 2 Marks]

Soln.

$$Y(f) = j2\pi f X(f) - X(f)$$

PSD
$$S_Y(f) = |(j2\pi f - 1)^2|S_X(f)$$

$$S_X(f) = FT\{R_X(\tau)\}$$

$$= FT(e^{-\pi\tau^2})$$

$$= e^{-\pi f^2}$$

$$S_Y(f) = (4\pi^2 f^2 + 1)e^{-\pi f^2}$$

Option (a)

- 11. Two independent random variables X and Y are uniformly distributed in the interval [-1,1]. The probability that max [X,Y] is less than 1/2 is
 - (a) 3/4

(c) 1/4

(b)9/16

(d) 2/3

[GATE 2012: 1 Mark]

Soln.

$$-1 \le X \le 1$$
 and $-1 \le Y \le 1$

The region in which maximum of [X, Y] is less than 1/2 is shown as shaded region inside the rectangle.

$$P\left[\max(X,Y) < \frac{1}{2}\right] = \frac{Area\ of\ shaded\ region}{Area\ of\ entire\ region}$$

$$=\frac{\frac{3}{2}\times\frac{3}{2}}{2\times2}=\frac{9}{4\times4}$$

$$=\frac{9}{16}$$

Option (b)

12. A power spectral density of a real process X (t) for positive frequencies is shown below. The values of $[E[X^2(t)]]$ and [E[X(t)]] respectively are

Soln. The mean square value of a stationary process equals the total area under the graph of power spectral density

$$E[X^{2}(t)] = \int_{-\infty}^{\infty} S_{X}(f)df$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{X}(\omega) d\omega$$

$$= \frac{2}{2\pi} \int_{0}^{\infty} S_{X}(\omega) d\omega$$

 $= \frac{1}{\pi} [area under the triangle \\ + integration under delta function]$

$$=\frac{1}{\pi}\bigg[2\left(\!\frac{1}{2}\!\times1\!\times6\times10^3\right)\!+400\bigg]$$

$$=\frac{6400}{\pi}$$

|E[X(t)]| is the absolute value of mean of signal X(t) which is also equal to value of $X(\omega)$ at $\omega=0$

From PSD

$$S_X(\omega)|_{\omega=0}=0$$

$$|X(\boldsymbol{\omega})|^2 = \mathbf{0}$$

$$|X(\omega)| = 0$$

Option (b)

- 13. Let U and V be two independent zero mean Gaussian random variables of variances $\frac{1}{4}$ and $\frac{1}{9}$ respectively. The probability $P(3V \ge 2U)$ is
 - (a) 4/9

(c) 2/3

(b) 1/2

(d) 5/9

[GATE 2013: 2 Marks]

Soln.

$$P(3V - 2U) = P(3V - 2U \ge 0)$$
$$= P(W \ge 0)$$
$$W = 3V - 2U$$

W is the Gaussian Variable with zero mean having pdf curve as shown below

$$P(W \ge 0) = \frac{1}{2}(area\ under\ the\ curve\ from\ 0\ to\ \infty)$$
 Option (b)

14. Let $X_1, X_2, and X_3$ be independent and identically distributed random variables with the uniform distribution on [0,1]. The probability $P\{X_1 \text{ is the largest}\}$ is _____

[GATE 2014: 1 Mark]

Soln. Probability $P[X_1] = P[X_2] = P[X_3]$

$$P_1 + P_2 + P_3 = 1$$
 $P(X_1) + P(X_2) + P(X_3) = 1$
 $3P(X_1) = 1$
 $P(X_1) = \frac{1}{3}$

15. Let X be a real-valued random variable with E[X] and $E[X^2]$ denoting the mean values of X and X^2 , respectively. The relation which always holds

(a)
$$(E[X])^2 > E[X^2]$$

(c)
$$E[X^2] = (E[X])^2$$

(b)
$$E[X^2] \ge (E[X])^2$$

(d)
$$E[X]^2 > (E[X])^2$$

[GATE 2014: 2 Marks]

Soln. variance $\sigma_X^2 = E[X^2] - m_X^2$

$$\overline{X^2} - m_X^2$$

= mean square value – square of mean value

$$\sigma_X^2 = E[X^2] - [E(X)]^2$$

Variance is always positive so $E[X^2] \ge [E(X)^2]$

And can be zero

Option (b)

- 16. Consider a random process $X(t) = \sqrt{2}\sin(2\pi t + \phi)$, where the random phase ϕ is uniformly distributed in the interval $[0,2\pi]$. The autocorrelation $E[X(t_1)X(t_2)]$ is
 - (a) $\cos[2\pi(t_1 + t_2)]$

(c) $\sin[2\pi(t_1+t_2)]$

(b) $\sin[2\pi(t_1-t_2)]$

(d) $\cos[2\pi(t_1 - t_2)]$

[GATE 2014: 2 Marks]

Soln. $E[X(t_1) X(t_2)] = E[A \sin(2\pi t_1 + \phi) \times A \sin(2\pi t_2 + \phi)]$

$$= \frac{A^2}{2} E[\cos 2\pi (t_1 - t_2) - \cos 2\pi (t_1 + t_2 + 2\phi)]$$

$$= \frac{A^2}{2} \cos 2\pi (t_1 - t_2)$$

$$E[\cos 2\pi(t_1+t_2+2\phi)]=0$$

Option (d)

17. Let X be a random variable which is uniformly chosen from the set of positive odd numbers less than 100. The expectation, E[X] is

[GATE 2014: 1 Mark]

Soln.

$$E[X] = \frac{1+3+5+---(2n-1)}{50}$$

Where n = 50

$$=\frac{n^2}{50}=50$$

18. The input to a 1-bit quantizer is a random variable X with pdf $f_X(x) = 2e^{-2x}$ for $x \ge 0$ and $f_X(x) = 0$ for x < 0. For outputs to be of equal probability, the quantizer threshold should be_____

[GATE 2014: 2 Marks]

Soln. The input to a 1-bit quantizer is a random variable X with pdf

 $f_X(x)=2e^{-2x}$ for $x\geq 0$ And $f_X(x)=0$ for x<0 let V_{thr} be the quantizer threshold

$$\int_{-\infty}^{V_{thr}} 2e^{-2x} dx = \int_{V_{thr}}^{\infty} 2e^{-2x} dx$$

$$= \int_{0}^{V_{thr}} 2e^{-2x} dx = \int_{V_{thr}}^{\infty} 2e^{-2x} dx \quad f_{X}(x) = 0 \text{ for } x < 0$$

$$\frac{2e^{-2x}}{-2} \Big|_{0}^{V_{thr}} = \frac{2e^{-2x}}{-2} \Big|_{V_{thr}}^{\infty}$$

$$(-e^{-2V_{thr}} + e^{-0}) = -(0 - e^{-2V_{thr}})$$

$$e^{-2V_{thr}} = \frac{1}{2}$$

$$-2V_{thr} = \ln\left(\frac{1}{2}\right) = (-0.693)$$

$$V_{thr} = \frac{0.693}{2}$$

$$= 0.346$$