1. If the variance \(\sigma_x^2 \) of \(d(n) = x(n) - x(n - 1) \) is one-tenth the variance \(\sigma_x^2 \) of a stationary zero-mean discrete-time signal \(x(n) \), then the normalized autocorrelation function \(R_{xx}(k)/\sigma_x^2 \) at \(k = 1 \) is
 (a) 0.95
 (b) 0.90
 (c) 0.10
 (d) 0.05

 \[\text{[GATE 2002: 2 Marks]} \]

 \text{Soln. The variance } \sigma_x^2 = E[(X - \mu_X)^2]
 \text{Where } \mu_X (mean value) = 0

 \[\sigma_d^2 = E[(X(n) - X(n - 1))^2] \]

 \[\sigma_d^2 = E[X(n)]^2 + E[X(n - 1)]^2 - 2E[X(n)X(n - 1)] \]

 \[\frac{\sigma_x^2}{10} = \sigma_x^2 + \sigma_x^2 - 2R_{xx}(1) \]

 \[\sigma_x^2 = 20\sigma_x^2 - 20R_{xx}(1) \]

 \[\frac{R_{xx}}{\sigma_x^2} = \frac{19}{20} = 0.95 \]

 Option (a)

2. Let \(Y \) and \(Z \) be the random variables obtained by sampling \(X(t) \) at \(t = 2 \) and \(t = 4 \) respectively. Let \(W = Y - Z \). The variance of \(W \) is
 (a) 13.36
 (b) 9.36
 (c) 2.64
 (d) 8.00

 \[\text{[GATE 2003: 2 Marks]} \]
Soln. \(W = Y - Z \)

Given \(R_{XX(\tau)} = 4(e^{-0.2|\tau|} + 1) \)

Variance[\(W \)] = \(E[Y - Z]^2 \)

\[\sigma^2_W = E[Y^2] + E[Z^2] - 2E[YZ] \]

\(Y \) and \(Z \) are samples of \(X(t) \) at \(t = 2 \) and \(t = 4 \)

\[E[Y^2] = E[X^2(2)] = R_{XX(0)} \]

\[= 4(e^{-2|0|} + 1) = 8 \]

\[E[Z^2] = E[X^2(4)] = 4(e^{-0.2|0|} + 1) = 8 \]

\[E[YZ] = R_{XX(2)} = 4(e^{-0.2(4-2)} + 1) = 6.68 \]

\[\sigma^2_W = 8 + 8 - 2 \times 6.68 = 2.64 \]

Option (c)

3. The distribution function \(F_X(x) \) of a random variable \(X \) is shown in the figure. The probability that \(X = 1 \) is

\[F_X(X) \]

\[(a) \text{ Zero} \quad (b) \text{ 0.25} \quad (c) \text{ 0.55} \quad (d) \text{ 0.30} \]

\[\text{[GATE 2004: 1 Mark]} \]

Soln. The probability that \(X = 1 = F_X(x = 1^+) - F_X(x = 1^-) \)

\[P(x = 1) = 0.55 - 0.25 = 0.30 \]

Option (d)
4. If E denotes expectation, the variance of a random variable X is given by

(a) $E[X^2] - E^2[X]$
(b) $E[X^2] + E^2[X]$
(c) $E[X^2]$
(d) $E^2[X]$

\[\text{[GATE 2007: 1 Mark]} \]

Soln. The variance of random variable X

$\sigma_X^2 = E[(X - \mu_X)^2]$

Where μ_X is the mean value $= E[X]$

$\sigma_X^2 = E[X^2] + E[\mu_X]^2 - 2 \mu_X E[X]$

$\quad = E[X^2] + \mu_X^2 - 2 \mu_X \mu_X$

$\quad = E[X^2] - \mu_X^2$

$\quad = \text{mean square value} - \text{square of mean value}$

Option (a)

5. If $R(\tau)$ is the auto-correlation function of a real, wide-sense stationary random process, then which of the following is NOT true?

(a) $R(\tau) = R(-\tau)$
(b) $|R(\tau)| \leq R(0)$
(c) $R(\tau) = -R(-\tau)$
(d) The mean square value of the process is $R(0)$

\[\text{[GATE 2007: 1 Mark]} \]

Soln. If all the statistical properties of a random process are independent of time, it is known as stationary process.

The autocorrelation function is the measure of similarity of a function with its delayed replica.

\[R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t - \tau) f^*(t) \, dt \]
for \(\tau = 0 \), \(R(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t) f^*(t) dt \)

\[
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt
\]

\(R(0) \) is the average power \(P \) of the signal.

\(R(\tau) = R^*(-\tau) \) exhibits conjugate symmetry

\(R(\tau) = R(-\tau) \) for real function

\(R(0) \geq R(\tau) \) for all \(\tau \)

\(R(\tau) = -R(-\tau) \) is not true (since it has even symmetry)

Option (c)

6. If \(S(f) \) is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true?

(a) \(S(0) \geq S(f) \)

(b) \(S(f) \geq 0 \)

(c) \(S(-f) = -S(f) \)

(d) \(\int_{-\infty}^{\infty} S(f) df = 0 \)

[\text{GATE 2007: 1 Mark}]

\text{Soln.} \) Power spectral density is always positive

\(S(f) \geq 0 \)

Option (b)

7. \(P_X(x) = M \exp(-2|x|) + N \exp(-3|x|) \) is the probability density function for the real random variable \(X \) over the entire \(X \) axis \(M \) and \(N \) are both positive real numbers. The equation relating \(M \) and \(N \) is

(a) \(M + \frac{2}{3} N = 1 \)

(b) \(2M + \frac{1}{3} N = 1 \)

(c) \(M + N = 1 \)

(d) \(M + N = 3 \)

[\text{GATE 2008: 2 Marks}]
Soln.

\[
\int_{-\infty}^{\infty} P_X(x) \, dx = 1
\]

\[
\int_{-\infty}^{\infty} (M \, e^{-2x} + N \, e^{-3x}) \, dx = 1
\]

\[
\int_{0}^{\infty} (M \, e^{-2x} + N \, e^{-3x}) \, dx = \frac{1}{2}
\]

\[
\frac{M \, e^{-2x}}{-2} \bigg|_{0}^{\infty} + \frac{N \, e^{-3x}}{-3} \bigg|_{0}^{\infty} = \frac{1}{2}
\]

\[
\frac{M}{2} + \frac{N}{3} = \frac{1}{2}
\]

or,

\[
M + \frac{2N}{3} = 1
\]

Option (a)

8. A white noise process \(X(t) \) with two-sided power spectral density \(1 \times 10^{-10} \, W/Hz \) is input to a filter whose magnitude squared response is shown below.

The power of the output process \(y(t) \) is given by

(a) \(5 \times 10^{-7} W \)
(b) \(1 \times 10^{-6} W \)
(c) \(2 \times 10^{-6} W \)
(d) \(1 \times 10^{-5} W \)

\[\text{[GATE 2009: 1 Mark]}\]
Soln. Power spectral density of white noise at the input of a filter = $G_i(f)$

$$G_i(f) = 1 \times 10^{-10} (W/Hz)$$

PSD at the output of a filter

$$G_0(f) = |H(f)|^2 G_i(f)$$

$$= \frac{1}{2} (2 \times 10 \times 10^3 \times 1) \times 10^{-10}$$

$$= 10^{-6} W$$

Option (b)

9. Consider two independent random variables X and Y with identical distributions. The variables X and Y take value 0, 1 and 2 with probabilities $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$ respectively. What is the conditional probability $(X + Y = 2 | X - Y = 0)$?

(a) 0
(b) $\frac{1}{16}$
(c) $\frac{1}{6}$
(d) 1

[GATE 2009: 2 Marks]

Soln.

$$P(X = 0) = P(Y = 0) = \frac{1}{2}$$

$$P(X = 1) = P(Y = 1) = \frac{1}{4}$$

$$P(X = 2) = P(Y = 2) = \frac{1}{4}$$

$$P(X - Y = 0) = P(X = 0,Y = 0) + P(X = 1,Y = 1)$$

$$+ P(X = 2,Y = 2) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{6}{16}$$

$$P(X + Y = 2) = P(X = 1,Y = 1) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$
\[P(X + Y = 2 \mid x - y = 0) = \frac{1}{16} \div \frac{6}{16} = \frac{1}{6} \]

Option (c)

10. \(X(t)\) is a stationary random process with autocorrelation function \(R_X(\tau) = \exp(-\pi \tau^2)\). This process is passed through the system below. The power spectral density of the output process \(Y(t)\) is

\[
\begin{align*}
H(f) &= j2\pi f \\
X(t) &\rightarrow H(f) = j2\pi f \rightarrow + \rightarrow \sum \rightarrow Y(t) \\
\end{align*}
\]

(a) \((4\pi^2 f^2 + 1) \exp(-\pi f^2)\)
(b) \((4\pi^2 f^2 - 1) \exp(-\pi f^2)\)
(c) \((4\pi^2 f^2 + 1) \exp(-\pi f)\)
(d) \((4\pi^2 f^2 - 1) \exp(-\pi f)\)

[\text{GATE 2011: 2 Marks}]

Soln.

\[
Y(f) = j2\pi f \ X(f) - X(f)
\]

PSD \(S_Y(f) = |(j2\pi f - 1)^2|S_X(f)\)

\[
S_X(f) = FT\{R_X(\tau)\} = FT(e^{-\pi \tau^2}) = e^{-\pi f^2}
\]

\[
S_Y(f) = (4\pi^2 f^2 + 1)e^{-\pi f^2}
\]

Option (a)
11. Two independent random variables X and Y are uniformly distributed in the interval $[-1, 1]$. The probability that $\max [X, Y]$ is less than $1/2$ is

(a) $3/4$ \hspace{1cm} (c) $1/4$
(b) $9/16$ \hspace{1cm} (d) $2/3$

\[\text{[GATE 2012: 1 Mark]} \]

Soln.

\[-1 \leq X \leq 1 \text{ and } -1 \leq Y \leq 1 \]

The region in which maximum of $[X, Y]$ is less than $1/2$ is shown as shaded region inside the rectangle.

\[
P \left[\max (X, Y) < \frac{1}{2} \right] = \frac{\text{Area of shaded region}}{\text{Area of entire region}}
\]

\[
= \frac{\frac{3}{2} \times \frac{3}{2}}{2 \times 2} = \frac{9}{4 \times 4}
\]

\[
= \frac{9}{16}
\]

Option (b)
12. A power spectral density of a real process $X(t)$ for positive frequencies is shown below. The values of $[E[X^2(t)] \text{ and } |E[X(t)]|]$ respectively are

\[
S_X(\omega) \quad \text{with} \quad 400 \delta(\omega - 10^4)
\]

(a) $6000/\pi, 0$
(b) $6400/\pi, 0$
(c) $6400/\pi, 20/(\pi\sqrt{2})$
(d) $6000/\pi, 20/(\pi\sqrt{2})$

[GATE 2012: 1 Mark]

Soln. The mean square value of a stationary process equals the total area under the graph of power spectral density

\[
E[X^2(t)] = \int_{-\infty}^{\infty} S_X(f) df
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_X(\omega) d\omega
\]

\[
= \frac{2}{2\pi} \int_{0}^{\infty} S_X(\omega) d\omega
\]

\[
= \frac{1}{\pi} \left[\text{area under the triangle} + \text{integration under delta function} \right]
\]

\[
= \frac{1}{\pi} \left[2 \left(\frac{1}{2} \times 1 \times 6 \times 10^3 \right) + 400 \right]
\]
\[
\frac{6400}{\pi}
\]

\[|E[X(t)]| \text{ is the absolute value of mean of signal } X(t) \text{ which is also equal to value of } X(\omega) \text{ at } \omega = 0\]

From PSD
\[S_X(\omega)|_{\omega=0} = 0\]

\[|X(\omega)|^2 = 0\]

\[|X(\omega)| = 0\]

Option (b)

13. Let U and V be two independent zero mean Gaussian random variables of variances \(\frac{1}{4}\) and \(\frac{1}{9}\) respectively. The probability \(P(3V \geq 2U)\) is
(a) 4/9
(b) 1/2
(c) 2/3
(d) 5/9

[GATE 2013: 2 Marks]

Soln.

\[P(3V - 2U) = P(3V - 2U \geq 0)\]

\[= P(W \geq 0)\]

\[W = 3V - 2U\]
W is the Gaussian Variable with zero mean having pdf curve as shown below

\[P(W \geq 0) = \frac{1}{2} \text{(area under the curve from 0 to } \infty) \]

Option (b)

14. Let \(X_1, X_2, \text{ and } X_3 \) be independent and identically distributed random variables with the uniform distribution on \([0,1]\). The probability \(P\{X_1 \text{ is the largest}\} \) is ________

\[P\{X_1 \text{ is the largest}\} = \frac{1}{3} P\{X_1\} = \frac{1}{3} P\{X_2\} = \frac{1}{3} P\{X_3\} \]

\[P(X_1) + P(X_2) + P(X_3) = 1 \]

\[3P(X_1) = 1 \]

\[P(X_1) = \frac{1}{3} \]

15. Let \(X \) be a real-valued random variable with \(E[X] \) and \(E[X^2] \) denoting the mean values of \(X \) and \(X^2 \), respectively. The relation which always holds

(a) \((E[X])^2 \geq E[X^2] \)
(b) \(E[X^2] \geq (E[X])^2 \)

(c) \(E[X^2] = (E[X])^2 \)
(d) \(E[X]^2 \geq (E[X])^2 \)

\[\text{Variance is always positive so } E[X^2] \geq [E(X)]^2 \]

And can be zero

Option (b)
16. Consider a random process $X(t) = \sqrt{2} \sin(2\pi t + \phi)$, where the random phase ϕ is uniformly distributed in the interval $[0,2\pi]$. The autocorrelation $E[X(t_1) X(t_2)]$ is

(a) $\cos[2\pi(t_1 + t_2)]$

(b) $\sin[2\pi(t_1 - t_2)]$

(c) $\sin[2\pi(t_1 + t_2)]$

(d) $\cos[2\pi(t_1 - t_2)]$

[**GATE 2014: 2 Marks**]

Soln.

$$E[X(t_1) X(t_2)] = E[A \sin(2\pi t_1 + \phi) \times A \sin(2\pi t_2 + \phi)]$$

$$= \frac{A^2}{2} E[\cos 2\pi(t_1 - t_2) - \cos 2\pi(t_1 + t_2 + 2\phi)]$$

$$= \frac{A^2}{2} \cos 2\pi(t_1 - t_2)$$

$$E[\cos 2\pi(t_1 + t_2 + 2\phi)] = 0$$

Option (d)

17. Let X be a random variable which is uniformly chosen from the set of positive odd numbers less than 100. The expectation, $E[X]$ is

[**GATE 2014: 1 Mark**]

Soln.

$$E[X] = \frac{1 + 3 + 5 + \ldots - (2n - 1)}{50}$$

Where $n = 50$

$$= \frac{n^2}{50} = 50$$

18. The input to a 1-bit quantizer is a random variable X with pdf $f_X(x) = 2e^{-2x}$ for $x \geq 0$ and $f_X(x) = 0$ for $x < 0$. For outputs to be of equal probability, the quantizer threshold should be_____
Soln. The input to a 1-bit quantizer is a random variable X with pdf

$$ f_X(x) = 2e^{-2x} \quad \text{for } x \geq 0 \quad \text{and} \quad f_X(x) = 0 \quad \text{for } x < 0 $$

let V_{thr} be the quantizer threshold

$$ V_{\text{thr}} = \int_{-\infty}^{V_{\text{thr}}} 2e^{-2x} \, dx = \int_{0}^{V_{\text{thr}}} 2e^{-2x} \, dx $$

$$ V_{\text{thr}} = \int_{0}^{V_{\text{thr}}} 2e^{-2x} \, dx = \int_{V_{\text{thr}}}^{\infty} 2e^{-2x} \, dx \quad f_X(x) = 0 \quad \text{for } x < 0 $$

$$ \frac{2e^{-2x}}{-2} \bigg|_{0}^{V_{\text{thr}}} = \frac{2e^{-2x}}{-2} \bigg|_{V_{\text{thr}}}^{\infty} $$

$$ (-e^{-2V_{\text{thr}}} + e^{0}) = -(0 - e^{-2V_{\text{thr}}}) $$

$$ e^{-2V_{\text{thr}}} = \frac{1}{2} $$

$$ -2V_{\text{thr}} = \ln \left(\frac{1}{2} \right) = (-0.693) $$

$$ V_{\text{thr}} = \frac{0.693}{2} $$

$$ = 0.346 $$