MOSFET & IC Basics – GATE Problems (Part - II)

1. In MOSFET devices the N-channel type is better than the P – Channel type in the following respects.
 (a) It has better immunity
 (b) It is faster
 (c) It is TTL compatible
 (d) It has better drive capability

 [GATE 1988: 2 Marks]

 Soln. In N – Channel MOSFETs the charge carriers are electrons while in P – channel MOSFETs holes are the charge carriers.

 The mobility of electrons is always greater than the mobility of holes.

 i.e. \[\mu_n > \mu_p \]

 Thus, N – Channel MOSFETs are faster

 Option (b)

2. In a MOSFET, the polarity of the inversion layer is the same as that of the
 (a) Charge on the GATE – EC – electrode
 (b) Minority carries in the drain
 (c) Majority carriers in the substrate
 (d) Majority carries in the source

 [GATE 1989: 2 Marks]

 Soln. In a MOSFET the polarity of inversion layer is the same as that of majority carriers in the source.

 For example, for N – MOSFETs the source is of N – type and inversion layer formed is of electrons.

 Option (d)

3. Which of the following effects can be caused by a rise in the temperature?
 (a) Increase in MOSFET current (I_{DS})
 (b) Increase in BJT current (I_C)
 (c) Decrease in MOSFET current (I_{DS})
 (d) Decrease in BJT current (I_C)

 [GATE 1990: 2 Marks]
The current equation for BJT is

\[I_C = \beta I_b + (1 + \beta)I_{CO} \]

As temperature increases, the leakage current \(I_{CO} \) increases, so the current \(I_C \) increases in BJT.

Since mobility decreases as temperature increases. So in MOSFETs current \(I_{DS} \) decreases with rise in temperature

Option (b) and (c)

4. When the gate – to – source voltage \(V_{GS} \) of a MOSFET with threshold voltage of 400 mV, working in saturation is 900 mV, the drain current is observed to be 1 mA. Neglecting the channel width modulation effect and assuming that the MOSFET is operating at saturation, the drain current for an applied \(V_{GS} \) of 1400 mV is

(a) 0.5 mA (c) 3.5 mA
(b) 2.0 mA (d) 4.0 mA

[GATE 2003: 2 Marks]

\[V_T = 400 \text{ mV} = 0.4 \text{ V} \]

Voltage applied at gate
\[V_{GS} = 900 \text{ mV} = 0.9 \text{ V} \]
\[I_{DS} = 1 \text{ mA} \]

Find the drain current for
\[V_{GS} = 1400 \text{ mV} \]
MOSFET is operating in saturation
\[I_{DS} = K (V_{GS} - V_T)^2 \]

or, \[1 \times 10^{-3} = K (0.9 - 0.4)^2 \]

or, \[K = \frac{10^{-3}}{(0.5)^2} = 4 \times 10^{-3} \frac{A}{V^2} \]

For \(V_{GS} = 1.4 \text{ V} \)
\[I_{DS} = K (V_{GS} - V_T)^2 \]
\[= 4 \times 10^{-3} (1.4 - 0.4)^2 \]
5. The drain of an n-channel MOSFET is shorted to the gate so that
\[V_{GS} = V_{DS} \]. The threshold voltage \(V_T \) of MOSFET is 1 V. If the drain current \(I_D \) is 1 mA for \(V_{GS} = 2 \) V, then for \(V_{GS} = 3 \) V, \(I_D \) is
(a) 2 mA
(b) 3 mA
(c) 9 mA
(d) 4 mA

\[\text{Option (d)} \]

Soln. Given,
\[V_{GS} = V_{DS} \]
Then the device is in saturation.
So, \[I_{DS} = K (V_{GS} - V_T)^2 \]
For \(I_{DS} = 1 \) mA, \(V_{GS} = 2 \) V, \(V_T = 1 \) V
\[1 = K (2 - 1)^2 \]
\[\text{or, } K = 1 \text{ mA/V}^2 \]
Again,
\[I_D = K (V_{GS} - V_T)^2 \]
For \(V_{GS} = 3 \) V
\[I_D = 1 \times (3 - 1)^2 \]
\[I_D = 4 \text{ mA} \]
\[\text{Option (d)} \]

6. An n-channel depletion MOSFET has following two points on its
\(I_D - V_{GS} \) curve
(i) \(V_{GS} = 0 \) at \(I_D = 12 \) mA and
(ii) \(V_{GS} = -6 \) V at \(I_D = 0 \)

Which of the following Q point will give the highest transconductance gain for small signals?
(a) \(V_{GS} = -6 \, V\)
(b) \(V_{GS} = -3 \, V\)
(c) \(V_{GS} = 0 \, V\)
(d) \(V_{GS} = 3 \, V\)

[GATE 2006: 2 Marks]

Soln. Transconductance \((g_m) = \frac{\delta I_D}{\delta V_{GS}}\) for \(V_{DS} = constant\)

The characteristics is plotted.

As \(I_D\) increases \(V_{GS}\) also increases Larger \(V_{GS}\) will have high transconductance

Thus, Option (d)

7. In the C MOS inverter circuit shown if the transconductance parameters of N MOS and P MOS transistor are

\[K_n = K_p = \mu_n C_{OX} \frac{W_n}{L_n} = \mu_p C_{OX} \frac{W_p}{L_p} = 40 \, \mu A/V^2 \]

and threshold voltages are \(V_T = 1V\) the current I is
Soln. Given

\[K_n = K_p = 40 \ \mu A/V^2 \]
\[V_T = 1 \ V \]

The device is in saturation. So the current is given by

\[I_{DS} = \frac{K_n}{2} (V_{GS} - V_T)^2 \]
\[\frac{40}{2} (2.5 - 1)^2 = 20 \times (1.5)^2 = 45 \ \mu A \]

Option (c)

8. Two identical N MOS transistors M₁ and M₂ are connected as shown below. \(V_{bias} \) Chosen so that both transistor are in saturation. The equivalents \(g_m \) of the pair is defined to be \(\frac{\partial I_{out}}{\partial V_i} \) at constant \(V_{out} \). The equivalent \(g_m \) of the pair is

\[(a) \ \text{The sum of individual } g_m \ \text{of two transistors.} \]
\[(b) \ \text{The product of individual } g_m \ \text{of the transistors.} \]
\[(c) \ \text{Nearly equal to the } g_m \ \text{of M₁} \]
\[(d) \ \text{Nearly equal to } g_m/g_0 \ \text{of M₂} \]

[GATE 2008: 2 Marks]
Soln. As per the principle of transconductance

\[
\frac{1}{g_m} = \frac{1}{g_{m_1}} = \frac{1}{g_{m_2}}
\]

\text{or, } \quad g_m = \frac{g_{m_1} g_{m_2}}{g_{m_1} + g_{m_2}} \approx g_{m_1}

Option (c)

9. The measured Transconductance \(g_m \) of an NMOS transistor operating in the linear region is plotted against voltage \(V_G \) at a constant drain voltage \(V_D \). Which of the following figures represents the expected dependence of \(g_m \) on \(V_G \).

\[(a) \quad (b) \quad (d) \quad (c) \]

Soln. Drain current \(I_D \) in the linear region is given by

\[
I_D = K_n \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]
\]

\text{and } \quad g_m = \frac{\partial I_D}{\partial V_{GS}} = K_n (V_{GS} - V_T) V_{DS}

So, \quad g_m \propto V_{GS}

So, linear characteristic

Option (c)
10. Consider the following two situations about the internal conditions in an n–channel MOSFET operating in the active region.

\(S_1 \): The inversion charge decreases from source to drain

\(S_2 \): The channel potential increases from source to drain

Which of the following is correct?
(a) Only \(S_2 \) is true
(b) Both \(S_1 \) and \(S_2 \) are false
(c) Both \(S_1 \) and \(S_2 \) are true but \(S_2 \) is not a reason for \(S_1 \)
(d) Both \(S_1 \) and \(S_2 \) are true and \(S_2 \) is reason for \(S_1 \)

[GATE 2009: 2 Marks]

Soln. MOSFET is also considered as gate – controlled resistor.

When +ve gate voltage in an n–channel MOSFET exceeds \(V_T \), electrons are induced in p – type substrate. This channel is also connected to \(n^+ \) source and drain regions. Channel looks like induced n – type resistor. With increase in gate voltage the channel becomes more conducting. The drain current increase (linear region). When more drain current flows, there is more ohmic voltage drop along the channel. The channel potential varies near zero from source to the potential at drain end.

The voltage difference between gate and channel reduces from \(V_G \) (near source) to \((V_G - V_D) \) near drain. When drain bias is increased \((V_G - V_D) = V_T \), the channel is pitched off. When \(V_D \) increase further the drain current is in saturation.

So, \(S_1 \) & \(S_2 \) are true and \(S_2 \) is reason for \(S_1 \)

Option (d) (Refer: Streetman)

11. The source of a silicon \((n_i = 10^{10} \text{ per } cm^3) \) n – channel MOS transistor has an area 1 sq µm and a depth of 1 µm. If the dopant density in the source is \(10^{19}/cm^3 \) the no. of holes in the source region with above volume is approx.

(a) \(10^7 \)
(b) 100
(c) 10
(d) 0

[GATE 2012: 2 Marks]
Soln. Given,

\[n_i = 10^{10} / \text{cm}^3 \]

Area

\[(A) = 1 \times 10^{-12} / \text{m}^2 \]

Depth

\[(d) = 10^{-6} \text{ m} \]

Volume

\[A \cdot d = 1 \times 10^{-2} \times 10^6 \text{ m}^3 = 10^{-18} / \text{m}^3 = 10^{-12} / \text{cm}^3 \]

\[N_D = n = 10^{19} / \text{cm}^3 \]

\[p = \frac{n_i^2}{N_D} = \frac{10^{20}}{10^{19}} = 10 / \text{cm}^3 \]

So,

Holes in volume V is

\[H = p \cdot V = 10^{-12} \times 10 \]

\[= 10^{-11} \]

Since not integer number \(\cong 0 \)

Option (d)

12. A depletion type N – channel MOSFET in biased in its linear region for use as a voltage controlled resistor. Assume threshold voltage \(V_{TH} = 0.5 V \), \(V_{GS} = 2.0 V \), \(V_{DS} = 5V \), \(W/L = 100 \), \(C_{OX} = 10^{-8} F/cm^2 \) and \(\mu_n = 800 \text{ cm}^2 / \text{V} \cdot \text{s} \). The value of the resistance of the voltage controlled resistor (in Ω) is __________

[**GATE 2014: 2 Marks**]

Soln. Given,

Depletion type MOSFET (N – Channel)

In linear region

\[V_{TH} = 0.5V \]

\[V_{GS} = 2.0V \]

\[V_{DS} = 5V \]
\[W/L = 100 \]
\[C_{OX} = 10^{-8} \text{ } F/cm^2 \]

The value of voltage controlled resistor is given by

\[r_{ds} = \frac{1}{\mu_n C_{OX} \frac{W}{L} (V_{GS} - V_T)} \]

\[r_{DS} = \frac{1}{800 \times 10^{-8} \times 100[2 - (-0.5)]} \]

\[r_{DS} = 500 \Omega \]

Answer: 500 \(\Omega \)

13. For the n-channel MOS transistor shown in figure, the threshold voltage \(V_{TH} \) is 0.8V. Neglect channel length modulation effects. When the drain voltage \(V_D = 1.6 \), the drain current \(I_D \) was found to be 0.5 mA. If \(V_D \) is adjusted to be 2V by changing the values of \(R \) and \(V_{DD} \), the new value of \(I_D \) (in m A) is

- (a) 0.625
- (b) 0.75
- (c) 1.125
- (d) 1.5

[GATE 2014: 2 Marks]
Soln. Given,

\[V_{TH} = 0.8 \, V \]
\[V_D = 1.6 \, V \]
\[I_D = 0.5 \, mA \]

For the given figure we notice that Gate is connected to drain
So, \(V_{GS} = V_{DS} = V_D \)

In saturation \(I_D \) is given by

\[I_{DS} = K(V_{GS} - V_T)^2 \]

So,

\[\frac{I_{D2}}{I_{D1}} = \frac{[V_{GS2} - V_T]^2}{[V_{GS1} - V_T]^2} \]

So,

\[\frac{I_{D2}}{I_{D1}} = \frac{(2 - 0.8)^2}{(1.6 - 0.8)^2} = 2.25 \]

or,

\[I_{D2} = 2.25 \times 0.5 \]

\[= 1.125 \, mA \]

Option (c)

14. For the MOSFET shown in the figure the threshold voltage \(|V_t| = 2V \)
and \(K = \frac{1}{2} \mu c \left(\frac{W}{L} \right) = 0.1mA/V^2 \). The value of \(I_D \) (in mA) is ________

\[V_{DD} = +12V \]
\[R_1 = 10 \, K\Omega \]
\[R_2 = 10 \, K\Omega \]
\[V_{SS} = -5V \]
Soln. The two MOSFET are in series so, same current will be flowing. For the bottom MOSFET it is easier to find V_{GS}

$$V_{GS} = V_G - V_S = 0 - 5$$

$$= 5V$$

V_{GS} is greater than threshold voltage,

So, MOSFET is in saturation

$$I_D = \frac{1}{2} \mu_n C_{OX} W \frac{L}{V} [V_{GS} - V_T]^2$$

$$= 0.1 \text{ mA/V}^2 [5 - 2]^2$$

$$0.1 \text{ mA/V}^2 [3]^2$$

$$I_D = 0.9 \text{ mA}$$

Answer: 0.9 mA

15. The slope of the I_D vs V_{GS} curve of an n-channel MOSFET in linear region is $10^{-3} \Omega^{-1}$ at $V_{DS} = 0.1V$. For the same device, neglecting channel length modulation, the slope of the $\sqrt{I_D}$ vs V_{GS} curve ($\sqrt{A/V}$) under saturation region is approximately _________

Soln. Given,

Slope of I_D vs V_{GS} curve for N-MOSFET in linear region is $10^{-3} \Omega^{-1}$

$$\text{i.e. } \frac{\partial I_D}{\partial V_{GS}} = 10^{-3}$$

In linear region the drain current is given by

$$I_D = K_n \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

where $K_n = \mu_n C_{OX} \frac{W}{L}$
\[
\frac{\partial I_D}{\partial V_{GS}} = K_n V_{DS}
\]

or,
\[
K_n = \frac{\frac{\partial I_D}{\partial V_{GS}}}{V_{DS}} = \frac{10^{-3}}{0.1} = 10^{-2}
\]

For saturation region,
\[
I_D = \frac{1}{2} K_n [V_{GS} - V_T]^2
\]

or,
\[
\sqrt{I_D} = \sqrt{\frac{K_n}{2}} [V_{GS} - V_T]
\]

\[
\frac{\partial \sqrt{I_D}}{\partial V_{GS}} = \sqrt{\frac{K_n}{2}}
\]

or,
\[
\frac{\partial \sqrt{I_D}}{\partial V_{GS}} = \frac{10^{-2}}{\sqrt{2}} = 0.0707 \sqrt{A} / V
\]

Answer: \(0.0707 \sqrt{A} / V\)

16. An ideal MOS capacitor has boron doping concentration of \(10^{15} \text{ cm}^{-3}\) in the substrate. When a gate voltage is applied, a depletion region of width 0.5 \(\mu m\) is formed with a surface (channel) potential of 0.2 V. Given that \(\varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}\) and the relative permittivity of silicon and silicon dioxide are 12 and 4 respectively the peak electric filed in \(\text{V/}\mu\text{m}\) in the oxide region is \(\text{__________}\)

[GATE 2014: 2 Marks]

Soln. Dopant is Boron, so p – type substrate

Thus device is n MOSFET. Peak electric field in Si substrate

\[
E_{si} = \frac{2\Psi_s}{W_d}
\]
Where, \(\Psi_s \) – surface potential

\(W_d \) – depletion region width

\[
E_{si} = \frac{2 \times 0.2}{0.5 \mu m} = 0.8/\mu m
\]

Electric field in oxide

\[
E_{OX} = \frac{\varepsilon_s}{\varepsilon_{OX}} \cdot E_{si}
\]

\[
= \frac{12}{4} \times 0.8 V/\mu m
\]

\[
= 2.4 V/\mu m
\]

Answer: \(E_{OX} = 2.4 V/\mu m \)

17. For the MOSFET M₁ shown in figure, assume

\(W/L = 2, V_{DD} = 2.0V, \mu_n \cdot C_{OX} = 100 \mu m/V^2 \) and \(V_{TH} = 0.5V \). The transistor M₁ switches from saturation region to linear region when \(V_{in} \) (in volts) is ___________

Soln. For saturation region drain current is given by

\[
I_D = K_n [V_{GS} - V_T]^2
\]

\[
= \frac{1}{2} \mu_n C_{OX} \frac{W}{L} [V_{GS} - V_T]^2
\]
\[V = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} [V_0]^2 \]

since, \[V_{GS} - V_T = V_{DS} = V_0 \]

So, \[I_D = \frac{1}{2} \times 100 \times 10^{-6} \times 2 \times V_0^2 \]

or, \[I_D = 100 \times 10^{-6} V_0^2 \]

(1)

Applying KVL in outer loop

\[V_{DD} = I_D \times 10K + V_0 \]

From equation (1) and (2) we get

\[2 = 100 \times 10^{-6} V_0^2 + V_0 \]

or, \[2 = V_0^2 + V_0 \]

or, \[V_0^2 + V_0 - 2 = 0 \]

\[V_0 = \frac{-1 \pm \sqrt{1 + 4 \times 1 \times 2}}{2 \times 1} = \frac{-1 \pm 3}{2} \]

So, \[V_0 = 1 \text{V or } -2 \text{V} \]

Taking \[V_0 = 1 \text{V} \]

\[V_{DS} = V_{GS} = V_T \]

or, \[V_0 = V_{in} - V_T \]

or, \[V_{in} = 1 + 0.5 = 1.5 \text{V} \]

Answer: 1.5V

18. In a MOS capacitor with an oxide layer thickness of 10 nm, the maximum depletion layer thickness is 100 nm. The permittivities of the semiconductor and the oxide layer are \(\varepsilon_s \) and \(\varepsilon_{OS} \) respectively. Assuming \(\varepsilon_s/\varepsilon_{OX} = 3 \), the ratio of the maximum capacitance of the minimum capacitance of this MOS capacitor is

[GATE 2015: 2 Marks]

Soln. Given,

Oxide layer thickness \((t_{ox}) = 10 \text{ nm}\)
Depletion layer thickness (t_{dep}) = 100 nm

$$\frac{\varepsilon_s}{\varepsilon_{OX}} = 3$$

Both oxide layer capacitance (C_{OX}) and depletion layer capacitances are coming in series, so the maximum capacitance will be when depletion layer capacitance (C_{dep}) will be absent

Maximum capacitance (C_{max}) = C_{OX}

Minimum capacitance (C_{min}) is given by

$$C_{min} = \frac{C_{OX} \cdot C_{dep}}{C_{OX} + C_{dep}}$$

Where C_{OX} and C_{dep} are capacitances per unit area

$$\frac{C_{max}}{C_{min}} = \frac{C_{OX}}{C_{OX} \cdot C_{dep} \cdot C_{OX} + C_{dep}} = \frac{C_{OX} + C_{dep}}{C_{dep}}$$

$$= 1 + \frac{C_{OX}}{C_{dep}} = 1 + \frac{\varepsilon_{OX}}{\varepsilon_s \frac{t_{OX}}{d}}$$
\[
= 1 + \frac{\varepsilon_{OX}}{\varepsilon_r} \cdot \frac{d}{t_{OX}}
\]

\[
\frac{C_{max}}{C_{min}} = 1 + \frac{1}{3} \times \frac{100}{10} = 4.33
\]

Answer: 4.33

19. In the circuit shown both enhancement mode NMOS transistor have the following characteristics: \(K_n = \mu_n C_{OX}(W/L) = 1 \text{mA}/\text{V}^2; V_{TN} = 1\text{V}\). Assume that the channel length modulation parameter \(\lambda\) is zero and body is shorted to source. The minimum supply voltage \(V_{DD}\) (in volts) needed to ensure that transistor \(M_1\) operates in saturation mode of operation is __

![Circuit Diagram]

[GATE 2015: 2 Marks]

Soln. In the given circuit

\(M_1\) is to operate in saturation. Both MOSFETs are NMOS

\[K_n = \mu_n C_{OX}(W/L) = 1 \text{mA}/\text{V}^2\]

\[V_{TN} = 1 \text{V}\]

Both MOSFETs are in series so same current will flow through them

For \(M_1\) : \(V_{GS_1} = 2V\) (As per figure)

If \(M_1\) is assumed in saturation, then

\[I_{D_1} = \frac{1}{2} K_n [V_{GS_1} - V_T]^2\]
Minimum V_{DS} required for M_1 to operate in saturation

$V_{DS1} = V_{GS1} - V_T = 2 - 1 = 1V$

For M_2 : $V_{GS2} - V_{DD} - V_{DS1} = V_{DD} - 1$

\[
I_{D_2} = \frac{1}{2} K_n [V_{GS2} - V_T]^2
\]

Since $I_{D_1} = I_{D_2}$

\[
\frac{1}{2} K_n [V_{GS1} - V_T]^2 = \frac{1}{2} K_n [V_{GS2} - V_T]^2
\]

or, $V_{GS1} - V_T = V_{GS2} - V_T$

$V_{GS1} = V_{GS2}$

or, $V_{GS1} = V_{DD} - 1$

or, $V_{DD} = 2 + 1 = 3V$

Answer: $V_{DD} = 3V$

20. The current in an enhancement mode NMOS transistor biased in saturation mode was measured to be 1 mA at a drain source voltage of 5V. When the drain source voltage was increased to 6V while keeping gate source voltage same. The drain current increased to 1.02 mA. Assume that drain to source saturation voltage is much smaller than the applied drain source voltage. The channel length modulation parameter λ (in V^{-1}) is ______________.

[GATE 2015: 2 Marks]

Soln. Given,

N MOS transistor

Biased in saturation $I_D = 1mA$, $V_{DS} = 5V$

Drain current in saturation including the effect of channel length modulation parameter

\[
I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})
\]
So, we can write the ratio of two current

\[
\frac{I_{D2}}{I_{D2}} = \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}
\]

\text{or,}\quad \frac{1.02}{1} = \frac{1 + 6\lambda}{1 + 5\lambda}

\text{or,}\quad 1.02 + 5.1\lambda = 1 + 6\lambda

\text{or,}\quad 0.9\lambda = 0.02

\text{or,}\quad \lambda = \frac{0.02}{0.9} = 0.022V^{-1}

21. Consider an n – channel metal oxide semiconductor field effect transistor (MOSFET) with gate to source voltage of 1.8V. Assume that

\[
\frac{W}{L} = 4, \mu_n C_{OX} = 70 \times 10^{-6} AV^{-2}
\]

The threshold voltage is 0.3V, and the channel length modulation parameter is 0.09V^{-1}. In the saturation region, the drain conduction (in micro Siemens) is ________

\text{[GATE 2016: 2 Marks]}

\text{Soln. Given,}

\text{N – MOSFET}

\[
V_{GS} = 1.8V, \quad \frac{W}{L} = 4, \quad \mu_n C_{OX} = 70 \times 10^{-6} AV^{-2}
\]

\[
V_{TH} = 0.3V, \quad \lambda = 0.09V^{-1}
\]

\text{Drain current in saturation including the effect of channel length modulation is}

\[
I_D = \frac{1}{2} \mu_n C_{OX} \left(\frac{W}{L}\right) (V_G - V_T)^2 (1 + \lambda V_D)
\]

\text{Channel conductance} \quad (g_d)
\[(g_d) = \left. \frac{\partial I_D}{\partial V_D} \right|_{V_G = \text{constant}} \]

\[g_d = \frac{\partial I_D}{\partial V_D} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_G - V_T)^2 \cdot \lambda \]

So,

\[g_d = \frac{1}{2} \times 70 \times 10^{-6} \times 4 \times (1.8 - 0.3)^2 \times 0.09 \]

\[= 140 \times 10^{-6} \times 2.25 \times 0.09 \]

\[= 28.35 \times 10^{-6} \]

\[g_d = 28.35 \mu \text{Siemens} \]

Drain conductance \(g_d = 28.35 \mu \text{Siemens} \)

22. A voltage \(V_G \) is applied across the MOS capacitor with metal Gate and p–type silicon substrate at \(T = 300 \text{ K} \). The inversion carrier density (in number of units per unit area) for \(V_G = 0.8V \) is \(2 \times 10^{11} \text{cm}^{-2} \) for \(V_G = 1.3V \), the inversion carrier density is \(4 \times 10^{11} \text{cm}^{-2} \). What is value of inversion carrier density of \(V_G = 1.8V \)

(a) \(4.5 \times 10^{11} \text{cm}^{-2} \)
(b) \(6.0 \times 10^{11} \text{cm}^{-2} \)
(c) \(7.2 \times 10^{11} \text{cm}^{-2} \)
(d) \(8.4 \times 10^{11} \text{cm}^{-2} \)

[SOLVED GATE 2016: 2 Marks]

Soln. Given,

For \(V_G = 0.8V \)

Inversion layer carrier density = \(2 \times 10^{11} \text{cm}^{-2} \)

For \(V_G = 1.3V \), Inversion layer carrier density = \(4 \times 10^{11} \text{cm}^{-2} \)

Find for \(V_G = 1.8V \)

For MOS capacitor

Charge \(Q \propto (V_G - V_T) \)

Charge \(Q_1 = K \cdot (V_G - V_T) \)
Or, $Q_1 = qA \times \text{inversion carrier density}$

So,

$$\frac{2 \times 10^{11} \cdot qA}{4 \times 10^{11} \cdot qA} = \frac{0.8 - V_T}{1.3 - V_T}$$

Or, $V_T = 0.3V$

Now for $V_G = 1.8V$, $Q_1 = qA \rho_i$

Where ρ_i is inversion carrier density

$$\frac{\rho_i \cdot q \cdot A}{2 \times 10^{11} \cdot q \cdot A} = \frac{(1.8 - 0.3)}{(0.8 - 0.3)}$$

or, $\rho_i = 6 \times 10^{11}/cm^2$

Option (b)

23. Consider long channel N MOS transistor with source and body connected together.

Assume that the electron mobility is dependent of V_{GS} and V_{DS}. Given,

$g_m = 0.5 \mu A/V$ for $V_{DS} = 50$ mV and $V_{GS} = 2V$

$g_d = 8 \mu A/V$ for $V_{GS} = 2V$ and $V_{DS} = 0V$

Where

$g_m = \frac{\partial I_D}{\partial V_{GS}}$ and $g_d = \frac{\partial I_D}{\partial V_{DS}}$

The threshold voltage (in volts) of the transistor is ________

[GATE 2016: 2 Marks]

Soln. Given long channel N MOS, it means it does not have the effect of channel length modulation. Since V_{DS} is 50 mV (small) it is operating in linear region. The drain current is given by

$$I_D = \mu_n C_{OX} \left(\frac{W}{L} \right) \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu_n C_{OX} \left(\frac{W}{L} \right) . V_{DS}$$
or, \[\mu_n C_{OX} \frac{W}{L} = \frac{g_m}{V_{DS}} = \frac{0.5 \times 10^{-6}}{50 \times 10^{-3}} = 10 \times 10^{-6} \]

Now,

\[g_d = \frac{\partial I_p}{\partial V_{DS}} = \mu_n C_{OX} \frac{W}{L} [V_G - V_T] \]

or, \[8 \times 10^{-6} = 10 \times 10^{-6} [V_{GS} - V_T] \]

or, \[V_{GS} - V_T = \frac{8 \times 10^{-6}}{10 \times 10^{-6}} \]

or, \[V_T = V_{GS} - 0.8 \]

\[= 2 - 0.8 = 1.2V \]

Answer: \(V_T = 1.2V \)

24. Figure I and II show two MOS capacitors of unit area. The capacitor in Figure I has insulator material X of (thickness \(t_1 = 1 \) nm and dielectric constant \(\varepsilon_1 = 4 \)) and y (of thickness \(t_2 = 3 \) nm and dielectric constant \(\varepsilon_1 = 20 \)). The capacitor in figure II has only insulator material X of thickness \(t_{eq} \). If the capacitors are of equal capacitance, then the value of \(t_{eq} \) (in nm) is________

[Figure I and II]

Soln. MOS structure is like a parallel plate capacitor

The capacitance per unit area for this geometry is
\[C' = \frac{\varepsilon}{d} \]

Where \(\varepsilon \) is permittivity of insulator

\(d \) is distance between plates

For area A,

\[C = \frac{\varepsilon A}{d} \]

As per figure I the two capacitors formed by the two dielectrics are in series

\[C = \frac{C_1 C_2}{C_1 + C_2} \]

\[= \left[\frac{4}{1 \times 10^{-9}} \times \frac{20}{3 \times 10^{-9}} \right] \varepsilon_0 \]

\[= \frac{4}{1 \times 10^{-9} + \frac{20}{3 \times 10^{-9}}} \varepsilon_0 \]

\[C = 2.5 \times 10^9 \varepsilon_0 \]

For the II case

\[C = \frac{\varepsilon_r \varepsilon_0}{t_{eq}} \]

or,

\[t_{eq} = \frac{\varepsilon_r \varepsilon_0}{C} \]

\[= \frac{\varepsilon_r \varepsilon_0}{2.5 \times 10^9 \varepsilon_0} = \frac{4}{2.5 \times 10^9} \]

\[= 1.6 \times 10^{-9} \text{ m} \]

\[t_{eq} = 1.6 \text{ nm} \]

Ans.1.6 nm